Vol.4 No.1
Year: 2010
Issue: Jul-Sep
Title: A Neuro-Fuzzy Controller for Doubly Fed Asynchronous Motor Drive
Author Name: Chaiba Azeddine, Rachid Abdessmed , M. Lokmen Bendass
Synopsis:
In this paper neuro-fuzzy controller for Doubly Fed Asynchronous Motor (DFAM) drive is proposed. First, a mathematical model of DFAM written in an appropriate d-q reference frame is established to investigate simulations. In order to control the rotor currents of DFAM, a torque tracking control law is synthesized using PI controllers, under conditions of the stator side power factor is controlled at unity level. A four layer Neural Network (NN) is used to adjust input and output parameters of membership functions in a fuzzy logic controller (FLC). The back propagation learning algorithm is used for training this network. The performances of neuro-fuzzy controller (NFC) which is based on the torque tracking control algorithm are investigated and compared to those obtained from the PI controller. Results obtained in Matlab/Simulink environment show that the NFC is more robust, superior dynamic performance and hence found to be a suitable replacement of the conventional PI controller for the high performance drive applications.
No comments:
Post a Comment